ARTICLE 10.—TABULAR VIEW OF MINERALS WHICH DECREPITATE WITH HEAT. By CAPTAIN F. H. BADDELEY, R. E., Member of the Geological Society of France, Hon. Mem. of the Lil. and Hist. Soc. of Quebec, and Corr. Mem. of the Nat. Hist. Soc. of Montreal.

The grouping together, under important and striking characters, common to them, the various and almost countless subjects in Natural History, has ever been admitted to be the only way in which an extensive knowledge of the Science can be acquired. It not only is the thread by means of which the interminable labyrinths of its study are explored, but it places before the student, those beautiful, instructive, and often curious analogies, contraries and coincidences, all of which it would be impossible to perceive without its assistance; and enables him to form correct and useful generalizations; it allows him, in short, to collect and examine the gems and stalactites—the ores and other mineral productions in the cavern of Natural History —by keeping constantly in sight of the guide and his torch.

Some years ago, with a view to familiarize myself with the characters of minerals, and to discover some of the analogies, &c., alluded to, I made various groups or tests of them, under different characteristic headings; a reference to which, it was likewise supposed, might assist me in determining the nature of

М

a few of those I should meet with. It is not pretended that there is anything novel in this mode of arrangement, as various lists of minerals, bearing particular relation to their specific gravities, hardness, and colour, &c., have been printed. I only propose to offer you other lists, headed by other important and striking characters, common to the minerals in such lists; and, as there are not any more so than those which the application of heat discloses, it is further proposed to commence with them.

It is well known, that the immediate, or almost immediate effect of an elevated temperature upon some minerals, is to cause them to decrepitate, or fly into particles suddenly, with a crackling report, more or less violent-a phenomenon which may be regarded as the noisy boasting of the enemy, caloric, over his yielding antagonist, cohesion. Some minerals never fail to exhibit this character, before the blow-pipe or in the matrass, while in others it is capricious ; but, as it is one which cannot be mistaken for another, and is, moreover, confined to a few minerals comparatively, a list will be presently introduced of those minerals which are said, by distinguished mineralogists, to decrepitate with heat, while opposite to every member in that list or table, will be affixed other characters, for the very obvious purpose of further distinction ; previously, however, a few observations are introduced upon the cause of decrepitation, and upon the mode of exhibiting, &c. Two causes have been assigned by chemists for the occurence of this phenomenon, viz. :---

- First,--The sudden conversion into steam, by caloric, of the water which the minerals previously contained.
- Second,--The unequal expansion of the laminæ, of which the minerals are composed, in consequence of their being imperfect conductors of heat.

Professor Ure, who adopts the latter opinion, criticises somewhat severely the former, and observes, that it is notorious, that some of those salts, which when absolutely dry, decrepitate most violently, contain no water whatever, and he instances, Sulphate of Barytes, Sulphate of Potass, and Muriate of Soda. Other mineral substances also, which decrepitate strongly with heat, contain no water; for instance, Fluor Spar, Glauberite, Chromate of Lead, Oxide of Tin, &c., and indeed, the greater portion of those minerals which are described by mineralogists as decrepitatory with heat, have no water set down in their respective analysis.

Although these facts are directly opposed to the opinion, that the presence of water is necessary in all, or even most cases, for the developement of decrepitation, there are cases, it would seem, in which its mechanical suspension in the mineral is necessary, before this phenomenon can be elicited. I have, at this moment, before me a mineral (a description of which is given at page 389, vol. II, Transactions Literary and Historical Society of Quebec,) which appears to be a compact variety of either the Hydrate of Magnesia or Hydrate of Allumine, (Dr. Holmes, of Montreal, is of opinion, that it is a variety of Stea-In a dry state it is slightly translucent on the edges, but tite). being very hydrophanous, it becomes deeply so when absorbing water, in which state, upon being exposed to heat, either in the matrass or on charcoal before the blow-pipe, it decrepitates violently; but, previously to the absorption of water, no such character belongs to it. It is further remarkable and corroborative of the opinion, that water is the cause of decrepitation, in this instance, that this character may be renewed, at pleasure, in the same assay, by only moistening it, previously to subjection to heat. This fact, however, is by no means opposed to Dr.

Ure's opinion as to the cause of decrepitation; because, it is highly probable, that the same mineral, which when dry, is a good conductor of heat, becomes the contrary when moist; and I believe, it will be found upon experiment, that other absorbent minerals which decrepitate when moist, lose that character upon becoming dry.

The phenomenon of decrepitation, is in general, best developed by directing the exterior flame of the blow-pipe suddenly upon the assay, upon charcoal; but different decrepitating minerals require often different degrees of heat; for, while some exhibit this character, only in the reducing flame of the blow-pipe, others, to do the same, must be submitted to the more moderate temperature of the candle or matrass; whatever the degree of heat be however, it should always be applied suddenly, for, some of those minerals not subject to this law, may be made not to discover it, if they be heated gradually, a mode often adopted, when the fusibility of a mineral is the subject of enquiry, in which case decrepitation is a very inconvenient cha-In ascertaining, whether decrepitation be a character racter. belonging to a mineral, several trials, under different circumstances, should be made, for instance : in the candle, in the matrass, in the outer flame, in the reducing flame; and, when the mineral under examination, is absorbent or hydrophanous, it should be tried in both a moist and in a dry state, and in the description the particulars should be stated. It is obviously useless to continue the experiment with a fusing heat, or after the assay is red-hot, at which stages all decrepitation ceases.

It must be well understood, that in presenting to the Society the following Tabular View of Minerals which Decrepitate with Heat, it is not meant to assume, that a mineral which does not, *cannot* belong to one of the several species which it embraces, but only, that it *probably* does not; there are cases indeed, in which this probability almost amounts to a certainty; but the above general warning will not be the less necessary on that account. It must also be borne in mind, that the writer is not compiling a System of Mineralogy, but arranging a few minerals, under certain heads, principally as an *aide mémoire*, in doing which his main object, self-improvement, will be realized, whatever opinion may be entertained of the general usefulness of his labours.

Wishing to have, as far as it was possible, an occular proof of the approximate accuracy of these Tables, I have experimentally consulted as many of the minerals mentioned in them as are to be met with in the Cabinet belonging to the Literary and Historical Society; at least, whenever the specimens would admit of it, without injury to them. With reference to these Tables and experiments, I have ventured to mark in the former, with an asterisk, those minerals in which decrepitation may be considered sufficiently striking and constant to be characteristic. This experimental part of my labour would have been more satisfactory had I possessed the opportunity of consulting a larger cabinet, and, I trust, that great allowance will be made for this, or any other attempt which may succeed it, to be useful, while it is considered, that neither minerals, books, nor men, are very readily consulted in a country just commencing its scientific flight.

As they may not be found devoid of interest, although their perfect accuracy I will not guarantee, the experiments alluded to above, are here introduced :---

SULPHATE OF BARYTES.

Of fourteen specimens of this mineral examined, twelve exhibited strong decrepitation. Of the two which failed one consisted of acicular prismatic crystals—the other was a fibrously compact variety, from Monte Paterno, near Bologna, (Bolognian Stone). Those in which this character was most striking were of a distinctly laminar or foliated structure.

CARBONATE OF BARYTES.

One specimen, (the only one tried) slightly.

SULPHATE OF STRONTIAN.

Not one of seven specimens tried (four of them crystallized) can be considered as having decrepitated; the slightest, almost imperceptible motion, in some of them was alone observed. May not the presence of the Sulphate of Barytes give this character to this mineral when it exists ?

ARRAGONITE.

Three, of six assays from this mineral, decrepitated strongly. No signs of decrepitation in the others.

HYDRATE OF MAGNESIA AND MARMOLITE.

Two specimens were tried, from the locality of Hoboken, New Jersey, neither of which succeeded; the presence of moisture might alter the case however, as it does with the specimen alluded to in the early part of this paper, and which resembling the Marmolite in appearance, is also found, to hold the same geological position, forming thin layers and thick seams in the serpentine and talcose schist of the Gannanoqui.

BRONZITE AND HYPERSTENE.

Unsuccessful experiments.

FULLERS' EARTH.

Decrepitation remarkably strong but single---one specimen tried.

CRYOLITE AND ALUMSTONE.

No decrepitation in one assay of each-the fusibility, in-

deed, of the former is so great, that if ever it exhibit that character, and Berzelius stands alone as authority (first-rate however) that it does, it must be at a very low temperature comparatively, as it melts in the flame of a candle.

The Metallic Minerals, submitted to experiment were the following, viz. :--

CARBONATE OF LEAD.

All, of six crystallized specimens, decrepitated strongly.

SULPHURET OF LEAD.

Only five, of ten assays, decrepitated; these did so, however, strongly—one was crystallized in cubes—two granular, and two massive (laminarly): those deficient in this character were, three, massive—one, granular (argentiferous)—and one, crystallized in octohedra.

MOLYBDATE OF LEAD.

The only two specimens tried decrepitated strongly; they were crystallized in flat octohedra (much flatter than the primary) and in very low right square prisms—Sheperd.

CHROMATE OF LEAD.

Also two specimens-strongly; both crystallized, one in rhombic prisms of 93° 30' and 86° 30'-Sheperd.

PHOSPHATE OF LEAD.

Three, of four specimens decrepitated, two of them crystallized in six-sided prisms, and one in acicular and radiating crystals—the former strongly—the latter slightly. A brown Phosphate of Lead, in six-sided prisms, apparently corroded, did not decrepitate.

OXIDE OF TIN.

The only specimen tried (under the usual form of crystal) very strong.

SULPHURET OF ZINC.

Five, of six assays, all from crystallized specimens, decrepitated. The specimen in which this character was not observed is a fibrous blende.

ELECTRIC CALAMINE.

No decrepitation in the two specimens tried.

CARBONATE OF IRON.

Four, out of five, strongly; both crystallized and massive the fifth was "in distinct crystals of the *primitive* form."— Sheperd. Among an equal number of primary and secondary crystals of the same decrepitating mineral would not the character appear more frequently in the latter than the former?

WOLFRAM

Three, out of four-two crystallized (laminarly) and one compact (the last most violently); the fourth was granular.

TUNGSTATE OF LIME.

One specimen (crystallized in octohedra) slightly-the only one tried.

COPPER PYRITES.

Four specimens tried, decrepitated—three of them strongly (two crystallized, one compact); the fourth (botryoidal) slightly.

GREEN CARBONATE OF COPPER.

Of four specimens, the only crystallized one (a circumstance unusual) among them, did not decrepitate.

It will be found in general, that a mineral which decrepitates possesses either a crystallized form or a crystalline structure; and further, that it is either laminar or compact, the former most frequently. Among fibrous minerals the character is somewhat rare, and still more so among such as are of an earthy texture. Fullers' earth is a striking exception to the latter assertion, but it must be remembered, that its texture is quite as compact as it is earthy, and an analogous observation may be made respecting the Green Carbonate of Copper, the structure of which is very compact as well as fibrous. Granular minerals often exhibit decrepitation, but they are obviously, in general, composed of an assemblage of small crystals—from all of which it appears, that in collecting an assay for examination in this particular character, the most crystalline portion of the mineral should be taken, and particularly such portion the structure of which is laminar.

In compiling this paper, all the works on the subject I could meet with have been consulted, viz. : Berzelius, Bakewell, Cleaveland, Griffin, Mohs, Jameson, and Phillips. A few, a very few, of the observations are original, at least, as far as the writer's information extends. Should the whole prove acceptable, his labours will be continued on the same plan. Among the distinguished works on Mineralogy just named, not one holds a higher place than Cleaveland's, at once remarkable for its fulness of detail, and for its perspicuity of style .It is a treatise I have always had recourse to in my mineralogical di ffi culties, and the student will find it, as I have, the Pharos, which if it do not always conduct to port, will, at least, save him from being wrecked upon the shoals and quicksands of the Science. If he be an American, two additional motives are his to possess it, as it is a work of which he may be justly proud, and the only one which offers him a compendium of the Mineralogy of his country.*

[•] C. U. Sheperd, Esq., of Yale College, has subsequently, published a useful little Mineralogical Directory, by means of which the names of Minerals under examination may be more readily ascertained.

ber.	NAME OF MINERAL, form under which it usu-	Col	OUR.		
Number	ally occurs, and authority for decrepitation.	In Mass.	Streak or Powder,	Lustre.	Structure
1	*Sulphate of Barytes(violently)—All authorities— Crystallized and massive, crystals rhomboidal prisms.	White, Blue, Yellow, Grey, Red Brown.	Streak White.	Vitreous inclining to resi- nous.	Laminar fibrous granular compact.
2	Carbonate of Barytes, Witherite (slightly). Jame- son, Cleaveland, Griffin, Mohs,—Generally, amorphous, sometimes crystallized in six sided prisms terminated by six sided pyramids, also stalactitic.	Yellowish	Streak White.	Vitreous inclining to resi- nous.	Fibrous usually.
3	Sulphate of Strontian.—Celestine.—Griffin, Mohs. —Crystallized and massive. Crystals, rhom- boidal prisms.	White, Grey, Blue, Reddish, Red.	Do.	Do. and somewhat pearly on the per- fect faces	Laminar fibrous.
4	*Fluate of Lime,—Fluor Spar, (usually with vio- lence)-All authorities. Generally crystallized in cubes or octohedrons, also massive.	White, Yellow, Blue, Green, Red.	Streak White.	Vitreous.	Laminar granular compact carthy.
5	Carbonate of Lime,—Calcareous Spar, (some va- rieties)—Crystallized, forms various, usually rhomboidal.	White, Grey,Red Green, Yellow.	Streak Greyish White.	Vitreous often pearly.	Laminar fibrous compact.
6	Do. Arragonite,—Cleaveland, "a small trans- parent fragment"—Mohs, "thin fragments of transparent crystals"—Bakewell,—Jameson, Crystallized in six sided prisms.	Do. and Blue.	Do.	Do.	Laminar fibrous compact.
7	Carbonate of Magnesia (Compact) Magnesite,- Griffin, "crackles"—Magnesite from Baudessero, crackles on charcoal, Berzelius.	Grey or Yellow.	Streak White and dull.	Dull.	Compact.
8	Hydrate of Magnesia,—Native Magnesia,— "crackles" Griffin. Massive and in regular hexahedral prisms.	White, inclining to Green.	Do. powder pure White.	Pearly upon the perfect faces.	Laminar.
9	*Diaspose (violently)-All authorities.—It decrepi- tates and is <i>dispersed</i> by the heat of a candle, whence its Grecian name,—Massive, rarely in doubly oblique prisms.	Greenish, Grey or Brown.		Vitreous and pearly.	Do.

*Minerals marked with an asterisk have the character of decrepitation constant.

Digitized by Google

p.Gr.	Hardness	Fusibility by the blow-pipe on charcoal	CHEMICAL CONSTITUENTS.	Additional Remarks.		
4.2	4 or 5 Fluor spar or Calc spar.	A white enamel with diffi- culty;of an hepatic flavor.		The enamel, formed by fusion on charcoal, communicates to the palate the flavor of rotten eggs. Varies from opaque to transparent,-when the latter, double relraction may be no- ticed.		
4.2	4 or 5 Fluor spar or Calc spar.	A white enamel easily; transpa- rent while hot.	Baryta. 73 Carbonie acid 22	Effervesces and disolves in the mu- riatic and nitric acids—opaque trans- lucent to semi.transparent,—brittle, doubly refractive when sufficiently transparent.		
3.5 4.0	4 or 5 Fluor spar or Cale spar.	A white enamel somewhat caustic.	Sulp. acid 46 Vauquein.	Its powder phosphoresces on red hot iron-translucent to transparent— brittle. Its enamel digested in muri- atic acid will give a rose-red colour to flame, but this is no distinctive character because all the carbonates of lime so treated will do the same.*		
3.0 3.2	4 Fluor spar.	A greyish white glass.	Lime 67-75 Klaproth. Fluoric acid 32-25 Lime 72-14 Fluoric acid 27-86 Berzelius.	When its powder is digested in sulphuric acid and heated it gives out white fumes which corrode glass- phosphoresces on glowing charcoal, translucent to transparent,-brittle.		
2.6 2.7	5 Calc spar	No; turns into a caustic lime.	Lime 57 Vauquelin. Carbonic acid 43 Vauquelin.	Burns to a caustic lime,-effervesces entirely dissolves in the muriatic and nitric acids,-translucent to transpa- rent, when the latter doubly refractive.		
2.9	4 Fluor.	opaque & friable in	quelin and Fourcroy. It still forms a	which is somewhat greater, does not differ from calcareous spar in any		
2.7	5 or 6 Calc spar or Selenite.	No; crack- les and shrinks, and becomes hard enough to scratch glass.	Magnesia 48 Carb. acid 52 Magnesia 48 Carb. acid 49 Water 3 Klaproth.	Dissolves in sulphuric acid (some- times with effervescence at others without) and by evaporation crystals of the sulphate of magnesia (epsom salts) are obtained. Adheres to the tongue—opaque.		
2.1	6 and below Selenite or Talc.	No; loses transpa- rency, and becomes friable and opaque.	Magnesia 70-00 Bruce. Water. 30-00 Bruce. Magnesia 69-75 Fyfe.	Dissolves entirely in the mineral acids without effervescence and affords by evaporation crystals of epsom salts- semi-transparent to transparent ₂ thin luminaflexible.		
3.4	3 or 4 apatite or Fluor.	No.	Alumina $S0-0$ Protox of iron. $3-0$ Water $7-3$ Alumina $76-06$ Protox of iron $7-78$ Water $4-70$	Translucent on the edges.		

So indeed would any other mineral if it should happen to contain a little carbonate of lime, even the samel of a sulphate of barytes containing lime would do the same. See Silliman's Journal, Vol. 18, p.261.

Digitized by Google

Z		Col	OUR.		
mber.	NAME OF MINERAL, form under which it usu- ally occurs, and authority for decrepitation.	In Mass.	Streak or Powder.	Lustre.	Structure
10	Calaite—Oriental Turquoise—Berzelius. In masses varying from the size of a nut to that of a goose's egg; reniform, botryoidal and mamillary.	Green.	Streak White.	Resinous.	Compact
11	Bronzite.—Diallage, Metalloide, Schiller Spar. Crackles a little in the matrass,—Berzelius, Griffin. Massive or imbeded.		Streak yellowish or greyish White.	Semi-me- tallic often tike brooze and pearly.	Laminar Fibrous.
12	Hyperstene, do. Labrador Hornblende. Crackles in the matrass—Griffin. Massive or imbeded.	Greyish or Greenish Black.	Greenish Grey Streak.	Do. do. sometimes coppery.	Lamin ar.
13	Fullers' Earth,—Berzelius,—Griffin. Occurs massive.	Green, Grey, White.	Streak similar shining resinous.	Dull, Glimmer- ing.	Compact earthy.
14	Precious Opal,—Cleaveland,—Phillips. Dissemi- nated in nodules.	Milky, White RF pale orangeTF	Streak White.	Vitreous sometimes Resinous.	Compact.
15	Gadolinite,—-Griffin,—-Cleaveland,—-Mohs,-— Bakewell. Massive and crystallized.	Velvet bik. Greent-b or Brownish black.	Streak greenish Grey.	Vitreous inclining to resi- nous.	Compact.
16	Flint—Cleaveland.	Various shades of grey, yel· low,black	Streak White.	Vitreous butfeeble.	Compact rarely laminar.
17	Fluate of Soda and Allumine, Cryolite,—Ber- zelius says, that from Greenland, decrepitates in the matrass. Massive.	White, Brown, Red.	Do.	Vitreous and slightly pearly.	Perfectly laminar.
18	Alumstone—Griffin,—Massive and crystallized; the crystals are rhomboidal.	White, Red, rarely Grey.	Do.	Do.	Compact or fine- grained
19	Marmolite,—Nuttall. Prismatic.	Fale Green and Grey.		Pearly in- clining to metallic.	Laminar.
20	Somervillite,—Brooke. Pyramidal.	Pale, Dull, Yellow.		Dull.	
21	Mesetine Spar,—Breithaup.	Dark Greyish, Yellowish White.	Streak White.	Vitreous.	Lamina

_				
Sp. Gr.	Hardness	Fasibility by the blow-pipe on charcos	CHEMICAL CONSTITUENTS.	Additional Remarks.
2.6 3.2	2 Felspar.	No; turns brown in F F. and co lours the fame gree	Alumina, 73-0) Water, 18-0 John.	The acids have no action upon it. Feebly translucent on the edges to opaque—Fracture conchoidal—Not crystallized.
3·0 3·4	3 or 4 Apatite or Fluor.	No; assu mes a lighter colour.	Silica,	Translucent more or less.
3·3 3·4	2 or 3 Felspar or Apatite.	Greenish grey, opaque, globule.	Alumina. 2 25 Lime	Some mineralogists describe this mineral as infusible mistaking it probably for the foregoing—opaque or nearly so—brittle.
1·7 2·2	6 or below Selenite or Salt.	With dif- ficulty a white ble- bby glass	Silica,	If thrown into water it forms a paste, which is not plastic, absorbs oil and fat, perfectly sectile-unctuous- opaque or nearly so, but becomes semi transpt. in water; falls to pieces.
2.1	2 Felspar.	No; turns opaque white.	Silica, 90 Water,10 Klaproth.	Highly translucent-hydrophanous and remarkable for the beautiful play of irised colours it exhibits by vary- ing the incidence of light-brittle.
4-2	1 or 2 Quartz or Felspar.	in very small	Protox of Cerium, 17.92	In nitric acid it loses its colour and is converted into a jelly—frequently magnetic— almost opaque.
2.6	1 & above Quartz or scratches Quartz.	No; turns white and opaque.	Aumina, 0.25 Kiaproin. Ox.of iron, 0.25 Water,	Brittle when first taken from its bed in "upper chalk" of which it is cha- racteristic—translucent on the edges or in thin portions—conchoidal frac- ture—fragments splintery and sharp.
2·9 3·0	5 or 6 Calc spar or selenite	by the flame of	Alumina, 21. 0 \exists 24.0 \exists Soda, 32.0 \exists 36.0 \exists Flu. acid, 47. 0 \exists 40.0 \exists a & Water 47.0 \exists 40.0 \exists	It dissolves like <i>ice</i> before the blow- pipe whence its name, and subsequent- ly becomes hard and slaggy—very hydrophanous—semi-transparent to translucent.
2·4 2·7	3 to 6 Apatite to Selenite.	No; emits a slight odor of sulphur.		After roasting it imparts to the palate the flavour of alum-trans- lucent to transparent-brittle.
	5 or 6 Calc spar orselenite	No;hardens and splits into laminæ.	Magnesia, 46.0 Silica,36.0 Lime, 2.0 Water,15.0 Ox. of iron and Chrome 0.5	Resembles chlorite. It forms with nitric acid a thick partly gelatinous mass-brittle-occurs in serpentine.
	Below Garnet.	Grey, globule.	Not analysed.	
3·34 8·37	Fluor.	No ?		In muriatic and nitric acid a feeble effervescence takes place but t is entirely soluble.

0

Digitized by Google

Metallic Minerals which

Nun	NAME OF MINERAL, form under which it usu-		OURS.			
Number.	ally occurs, and authority for decrepitation.	In Mass.	Streak or Powder.	Lustre.	Structure	Sp. Gr.
1	*Sulphuretted antimonial silver, Red silver. Clea- veland, Mohs, Phillips, Griffin, Bakewell.— Crystallized, dendritic, massive, micaceous.	Red, LeadGrey IronBlack		High sometimes Semi Metallic.	Laminar imperfect.	5·2 5·8
2	Argento Antimonial Sulphuret of Lead,—White silver.—Weissgaltegerty, Berzelius. Occurs massive and disseminated.	LeadGrey inclining to black sometimes light coloured.	Streak Similar.	Metallic.	Fibrous.	5·3 5.6
3	*Sulphate of Lead,—Griffin, Mohs, Phillips, Jameson. Occurs crystallized commonly in rhombic prisms with dihedral terminations ; also in octohedrons.	Yellowish	Streak White.	N.M. but adaman- tine pass- ing into vitreous or resinous.	Perfectly Laminar.	6·2 6·3
4	*Carbonate of Lead.—All authorities. Occurs in tabular crystals, in six sided prisms vari- ously terminated and in macled crystals of different forms.	Grov	Streak White.	N.M. but adaman- tine pass- ing into resinous.	Laminar more or less dis- tinctly.	5.7
5	*Sulphate of Lead.—Galena. (violently).— Cleaveland, Griffin, Phillips, Jameson. Crys- tallized in cubes or octohedrons; also amor- phous.	Lead Grey.	Streak Similar.	Metallic.	Laminar granular compact fibrous.	7.0 7.6
6	*Molybdate of Lead, (briskly). All authorities. Crystallized in flattish acute octohedrons; rarely massive.	Yellow, Yellowish Grey, Greenish and Grey- ishWhite.	Streak White.	Non Metallic, Waxy.	Perfectly Laminar.	5·1 6·8
7	*Chromate of Lead,—Berzelius, Griffin, Mohs, Phillips, Jameson. Crystallized and massive.	Red and Yellow.	Streak Orange Yellow.	Non Metallic, adaman- tine.	Laminar.	5.7 6.1
8	*Aluminous oxide of Lead. Plomb-gomme, (violently.)—Cleveland, Mohs, Phillips, Ber- zelius. In mamillary small masses.	Yellowish Reddish, Brown.	Yellow ?	Non Metallic.	Laminar concentri cally.	Heavy
9	*Triple Sulphate of Lead—Bournonite,—Griffin, Phillips, Bakewell, crystallized in rectangular prisms variously modified.	SteelGrey Lead Grey,Iron Grey.	Similar.	Metallic.	Perfectly Laminar.	5.5 5.8

Digitized by Google

-			
Fasibility by the blow-pipe on charcoal.	Hardness	CHEMICAL CONSTITUENTS.	Additional Characters.
Melts into a bead of silver exhaling sulphureous, and antimonial va- pours.	6	Silver,	Frequently burns with a bluish flame—soluble in dilute nitric acid. Opaque to semi-transparent—sectile:
Melts into a scoria of impure silver chaling copious white vapours of a sulphureous odor	Selenite.	Silver 20.40, Lead 48.06, Antimony 7.83, Iron 2.25, Sulphur 12.25, Alum 70, Silex 0.25; again a dark coloured variety, Lead 41.0, Ant 21.5, Sil. 9.25, Sulp. 22.0, Iron 1.75, Al. & Silex 1.75.—Klaproth.	Soluble in dilute nitric acid brit-
Easy into a white slag.		Ox. of Lead	In O. F. on charcoal fuses into a transparent glass which becomes opaque on cooling—in R. F.efferves- ces and a particle of lead is obtained. brittle,—translucent to transparent; usually in crystals.
Puses into a bead of lead but previ- ously becomes yellow or red.	4 to 6 Fluor spar to Selenite.	Oxide of Lead, 82.0 Carbonic Acid, 16.0 Water, 2.0	Soluble with effervescence in the nitric and muriatic acids—translu- cent to transparent when the latter doubly refractive in a high degree— brittle—powder phosphosescent on ignited charcoal.
Fuses easily into a bead of lead at the same time ex- haling the odor of sulphur.		Lead,85.13 Sulphur,13.02 Iron,	Brittle in the laminar varieties readily breaking into little cubes or cuboidal fragments. Partly soluble in nitric acid and leaves a white re- sidue.
nto a dark greyish mass which sinks nto the charcoal eaving particles if reduced lead.	5 or 6 Calc spar or Selenite.	Ox. of Lead, 64:4258:40 Molybdic acid34:2538:00 Ox. of Iron00:00 208 Silica,00:00 0:28	Soluble in hot nitric acid without effervescence.—Translucent on the edges to semi-transparent,—brittle.
Blackens and uses into a dark slag containing tobules of lead.	5 or 6 Calc spar or Selenite.	Oxide of Lead,68.00 Chromic Acid,32.00 Peaff.	Communicates in the course of a few hours a green tinge to muriatic acid.—To borax it also gives a green tinge—translucent to transparent sectile—soluble in nitric acid with effervescence.
No : becomes white and opaque.	Fluor spar or Calc spar.	Oxide of Lead,	Melts with borax into a colourless transparent glass; the presence of nitre is necessary to reduce the lead—translucent—resembles hyalite or mullers glass.
lelts with sulphu- cous vapours into a crust of lead ontaining copper	Calcare- ous spar or Selenite.	Antimony,	Easily soluble in heated nitric acid -very brittle-soils-sectile-blu- ish phosphorescence on ignited char- coal.

Metallic Minerals which

Nu	Norm on Morris Communities which it was		OUR.		1	
mber.	NAME OF MINERAL, form under which it usu- ally occurs, and authority for decrepitation.	In Mass.	Streak or Powder.	Lustre.	Structure	Sp.
10	•Phospate of Lead, (usually)—Phillips, Griffin, Jameson. Crystallized in six sided prisms generally modified in the edges; also botroyidal reniform and massive.	Yellow,	Streak White, someti- mes pale Brown, powder greyish White.	Non Metallic, Resinous.	Laminar.	6·2 7·2
11	*Oxide of Tin,—Tin Stone.—Cleaveland, Griffin, Phillips, Jameson.—Crystallized in quadran- gular prisms terminated by four sided pyramids, rarely massive.	Yellow.	Streak White, powder Greenish White,	Non Metallic, Adaman- tine.	Laminar?	6·3 7·0
12	*Sulphuret of Zinc,—Blende,,-Berzelius, Cleave- land, Griffin, Phillips, Jameson.—Crystallized and amorphous or massive; the forms of its crystals are very numerous,—tetrahedral, rhomboidal, octohedral, dodecahedral.	Yellow, Brown,	Streak White, powdow Grey.	N. M. Splendent Adaman- tine, vitre- ous, resi- nous, S. M.	Laminar.	3·7 4·2
13	Siliceous oxide of Zinc.—Electric Calamine,— Berzelius, Griffin, Phillips, Mohs, (slightly.) Occurs crystallized stalactic mamiliated, botryoidal and massive, the forms of its crys- tals are various among the common are a six sided prism, a four sided table, the octohedron is also met with.	Blue, Green, Yellow,	S treak White.	Non Metallic, Vitreous inclining to pearly.	Laminar. Compact.	3·3 3·5
14	Carbonate of Manganese.—Berzelius, Griffin, Mohs, (violently.)—Occurs massive.	Rose Red, incliming to Brown	Stresk White.	Non Metallic, Vitreous inclining to pearly.	Laminar.	2·8 3·3
15	Oxide of Antimony. —White Antimony, —Cleave- land, (sometimes.) Crystallized in tabular and acicular crystals, in diverging groups; more rarely massive.	White, Red, Grey.	Streak White.	Non Metallic, Adman- tine pearly.	Laminar.	5-0 5-6
16	Carbonate of Iron.—Sparry iron ore.—Berze- lius, Griffin,—some species violently. Crys- tallized in obtuse and acute rhomboids, iu six sided prisms, in octohedrons, in lenticular crystals, also massive.	White, Yellow, Brown, Black.	Streak White.	Non Metallie, Vitreous inclining to pearly.		3·6 4·0

ardness	on Charcoal.	CHEMICAL CONSTITUENTS.	Additional Characters.
Fluor spar r Calc spar.	Into a dark glo- bule of a poly hedral form.	Ox. of Lead,, 78-58 78-40 Phosp. acid, 19-73 18-37 Muriatic acid, 1-65 1-70 Ox. of Iron, 0-00 0-10	Dissolves in acids without effer- vescence. Reduced to the metaline state with borax—translucert on the edges to semi transparent—brittle.
lartz or ekpar.	Nearly infusible.	Klaproth. Desatils. Ox. of Tin, 99 (095.00) Ox. of Iron, 0.25 5-00 Silica, 0-75 0-00)	Insoluble in acids—usually crys- tallized—sem transparent to opsque and transporent.
o Calc spar.	No ; exhales a slight odor of sul- phur but does not fuse even with borax.	Thompson. Gueniveau. Zinc,	Its powder in nitric scid exhales the odor of sulphuretted hydrogen and dissolves-translucent to transpa- rent-brittle.
or		Berthier. Berzelius. Ox. of Zinc,66:0066:37 Silica,25:0026:23 Water, 9:00	Forms with borax a globule clear and glassy which becomes opaque in cooling. Its powder gelatinized in heated sulphnric or muriatic acid —phosphorescent by friction—brittle —translucent to transparent.
Fluor ipar to lenite.	No ; blackens.	Ox of Manganese, 54 60 ('arbonic acid,	Effervesces with the mineral acida and communicates to borax an ame- thystine tinge-brittle-translucent more or less.
	Entirely volata- lized, leaving a white coating.	Ox. of Antimony, 86.00 Do. Iron, 330 Silica, 8.00	It melts in the flame of a candle, sectile brittle—translucent to semi- transparent soluble in nitro-muriatic acid.
lc spar to .patite.	No ; blackens and becomes magnetic.	Protox of Iron, 63.75. 57.50 (arbonic aciid, 34 0036.00 Ox. of Mangan. 0 75 3.30 Lime, 0.000 1.25 Magensia, 0 52 000	Dissolves slowly in nitric acid with slight effervescence—brittle more or less translucent, suffers spon- taneous decomposition its surface bleachening in the atmosphere— colours borax green.

Metallic Minerals which

Nu	Norm on Merry of four order order is it and	Col	OUR.			1
umber.	NAME OF MINERAL , form under which it usu- ally occurs, and authority for decrepitation.	In Mass.	Streak or Powder.	Lustre.	Structure	Sp. (
17	Phosphate of Iron. Vivianite, Mohs. Crys- tallized in right oblique angled prisms often small aggregated and divergent, also earthy.		Streak Bluish White, changing to indigo blue, dry powder, liver Brown.	Metallic	powdery.	2∙€ 3∙C
18	*Tungstate of Iron—Ferruginous oxide of Tungs- ten.—Wolfram,—all authorities. In prismatic or tabular erystals also in octohedrons and mas- sive.		Streak dark Reddish Brown.	Non Metallic, adaman- tine or imperfect Metallic.		6·4 7·4
19	Tungstate of Lime —Calcareous oxide of Tungs- ten,—Griffin, Phillips, Jameson,—"crackles." In octohedral crystals, also amorphous-			Non Metallic, Vitreous inclining to ada- mantine.	Laminar. or often imper- fectly.	5·5 6·1
20	*Pyritous Copper,—Cleaveland. Copper Pyrites, —Phillips, Cleaveland, Jameson. In tetrahe- dral crystals, also stalactitic, botryoidal, ma- millated and amorphous.	Brass Yellow.	Streak Greenish Black, a little Shining.	Metallic.	Laminar granular.	4·2 4·3
21	Grey Copper,—Cleaveland. Fahlerz,—Philips, Cleaveland, Griffin, Jameson. In tetrahedral crystals; also massive and disseminated.	Steelgrey Iron Black.	Streak similar sometimes Brownish.	Do,	ş	4·4 5·4
22	•Green Carbonate of Copper, Green Malachite, Cleaveland, Griffin, Mohs, Jameson. In pris- matic macled crystals but usually massive botryoidal, reniform stalactitic and cellular.	Green.	Streak similar and paler.	Non Metallic, shining silky or pearly.	Compact, fibrous passing into each other.	3·5 4·0

1			
Hardnes	Fusibility by th Blow-pipe on Charcoal.	e Chemical Constituents.	Additional Remarks.
Calc spa to Talc.	into a magnetic	Protox of Iron, 47.50 41.00 Phos. acid,32.00 26.40 Water,20.00 31.00	Soluble in dilute sulphuric and nitric acids—translucent to transpa- rent. In thin laminar perfectly flex- ible—sectile.
Felspar of Apatite.	Melts in a strong heat into a scori- accous globule of metallic lustro which does not affect the needle	⁵ Tungstic acid,	In the nitric and muristic acids its powder becomes yellow—opaque.
Fluor spar or Calc spar.	No ; becomes opaque.	Tungstic acid, 80.42 { or Oxide of Scheelium. Lime, 19.40 Berzelius.	Turns yellow in nitric acid with borax forms a colourless glass trans- lucent to semi transparent—brittle.
Do.	bule which after	Copper,	Before fusion it becomes black which changes to red upon cooling. Partly dissolves in dilute nitric acid to which it communicates a green colour.
lpatite to Fluor.	globule.	In this species, Klaproth found Copper from 48.0 to 25.5, Iron 27 to 3.25, Sulphur 28 to 10, Arsenic 24 to 0, Silver 14.77 to 0, Antimony 1.5 to 0 besides a little zinc and mercury in some of the specimens.	Rather brittle.
'luor to alc spar	Nearly infusible blackens.		Yields to borax a green colour and a bead of copper, soluble without residue and with effervescence in itric acid to which it gives a green colour—translucent more or less— pritle—it gives a green tinge to the hame of burning bodies.

Metallic Minerals which

NAME OF	MINEBAL, form under which it usu-	Cold	OURS.				
	s, and authority for decrepitation.	In Mass.	Streak or Powder.	Lustre.	Structure	Sp. G	
This mine under an prisms te	Emerald Copper—Cleaveland, Mohs. eral is rare and has not been observed by other form than that of six sided erminated by a thee sided pyramid ted rhombic dodecahedron.		Streak Similar.	Non Metallic, Vitreous inclining to Resinous.	Laminar.	3·2 3·3	
Cleavelar In six si	of Copper, (foliated) Copper Mica,	Green.	Streak Similar.	Non Metallic, often Semi Metallic.	Laminar.	2.5	
rhombic	(slight)—Mohs, Phillips, Griffin, In crystals having the form of the dodecahedron, the cube and octo- rarely massive.	Blackish, LeadGrey TinWhite exter- nally.	Streak Reddish, Grey, Powder do.	Metallic.	Do. im. pérfectly.	4·3 4·4	
Griffin, I tallized in and eight	le of Uranium—Uranite,-Cleaveland, Phillips, Bakewell, Jameson. Crys- quadrangular prisms, in four, six sided tables, rarely in acute and tohedrons.	Yellow, Brown, Green.	Streak Similar.	Non Metallic, Shining.	Laminàr.	3·1 3·3	
Jameson.	xide of Columbium,—Phillips, Mohs, In rhombic prisms and in angular metimes as large as a hazle nut.	Green, Black, Brown.	Streak and powder Grey.	Somewhat Metallic occasio- nally.	Compact.	5·1 5·8	
Arsenical B	ismuth,—Mohs. In globular forms.	Dark hair Brown.		Non Metallic, resinous		Heav	

114

Digitized by Google

Hardness	Fusibility by the blow-pipe on charcoal.	CHEMICAL CONSTITUENTS.	Additional Characters.
Apatite or Fluor spar.	No; Blackens in Outward Flame reddens in Re- ducing Flame-	Ox. of Copper,	of the blow-pipe, and to borax, in the
or	Melts first into a black spongy scoria and after- wards into a black globule, during which process it exhales the odor of arsenic	Water,	Dissolves in nitric acid, without effervescence affording a greenish solution,translucent to transparent, sectile.
	Burning with a blue flame and emitting copious arsenic vapours, it melts into a black magnetic scoria.		Brittle.
Calc spar.	No ; acquires a brassy colour ; gives a yellowish green colour to borax.	Oxide of copper,	Soluble without effervescence in nitric acid, (Phillips says with) af- fording a solution of a yellow colour —Translucent on the edges to trans- parent,—sectile, brittle its laminæ not flexible like mica which it re- sembles.
		Black. Yellow. Ox. of Tantalium, 57,100 59,50 60, 1 Yttria, 20:25 29:490 29: 8 Lime, 6:25 3:29 0: 50 Ox. of Uranium,. 0:50 8:23 6: 6 Tun.acid with tin,S:25pure1:25 1:04 Ox of Iron, 3:50 2:72 1:15 Berzelius.	
1000	melts into a glass	Nothing is known of the chemical analysis of this Mineral ; and we are even deficient in information as to its physical characters ? ?	
121			

Digitized by Google

*Saline Minerals which

Number	VAME OF MINERAL, form under which it usu- ally occurs, and authority for decrepitation.	Colours.		<u>,</u>		
ber.		In Mass.	Streak or Powder.	Lustre.	Structure	Sp. G :
1	•Glanberite, Brithyne Salt,Griffin, Mohs, Phillips. All authoritiesCrystallized in oblique flat rhomboidal prisms ; also massive.	or	White.	Vitreous.	Laminar.	2·7 2·8
	⁹ Muriate of Soda, common Salt [†] . All autho- rities. Occursmassive and crystallized in the form of the cube and octohedron.		Strea k White.	Do.	Do. obscurely.	2·2 2·5

Combustible Materials which

1 Dysodile ''a crackling noise,''-Griffin, Phillips. Occurs massive.	Yellow, Grey, Greenish		Lamellar Compact.	
2 Candle Coal, Cannel Coal, Parrot Coal, Griffin, Cleaveland, Phillips. Occurs mas- sive.	Greyish Black.		Slaty in the large, compact in the small.	1·2 1·3
†See Silliman's Journal, Vol. 19. p. 198, for a curious instance of decrepitation. N. B.—The Nitrate of Potash, (saltpetre,) detonates on charcoal with heat, but does not decrepitate; the phenomena cannot be mistaken				

Digitized by Google

Hardness	Fusibility by the Blow-pipe on Charcoal.	CHEMICAL CONSTITUENTS.	Additional Characters.
Calc spar or Selenite.	white enamel.	,,	If immersed in water it loses its transparency and is partly dissolved, the same even occurs in a moist atmosphere—translucent to transpa- rent—brittle—taste saline and astrin- gent.
Selenite.	Melts disengages fumes and is absorbed.	Muriate of Soda,	Deliquences in the atmosphere and entirely dissolves in water—taste well known.

	No; burns with a considerable flame, and smoke leaving a residue of nearly half its weight.		While burning it exhales a fætor insupportably disagreeable—mace- rated in water it becomes translu cent and flexible—brittle—exhales an argillaceous odor when moistened.
Calc spar	No; burns with a bright flame.	Carban	Its odor while burning is not un pleasant—brittle.

. The preceding Tables were intended to be the first of a Series, embracing the leading characteristics of Minerals, arranged in a similar manner ;---the value of such a Guide to the Student of Mineralogy has already been touched upon. Unfortunately, however, CAPTAIN BADDELEY was called from Quebec, before he could carry his intentions fully into execution-and the increasing claims of duty, consequent on the distracted state of the Province, during some years, and his subsequent departure, for India, put it out of his power to resume his work. The Society have, however, deemed it right to give these Tables a place in their TRANSACTIONS, both from their intrinsic value, as far as they go, and as the latest Work of one, who, while in the Province, laboured long and zealously in the field of Canadian Geology and Mineralogy, as the preceding Volumes of their " Transactions" amply testify.